

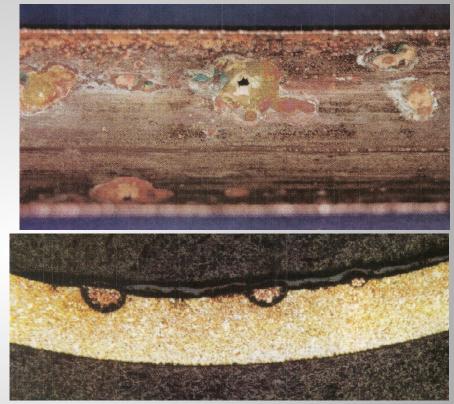
Condenser Tubes in Thermal Power Plants Issues and Solutions

ICCI 2014 April 24, 2014

Presented by Dan Janikowski +1 262 642 8365 E-Mail: djanikowski@plymouth.com

Tube Problems Recently Erupted

- Copper failures for several reasons
- Microbiological influenced corrosion (MIC)
- Hydrogen embrittlement
- New titanium fatigue mechanism
- Cleaning related problems
- New tubes are not made like they used to be

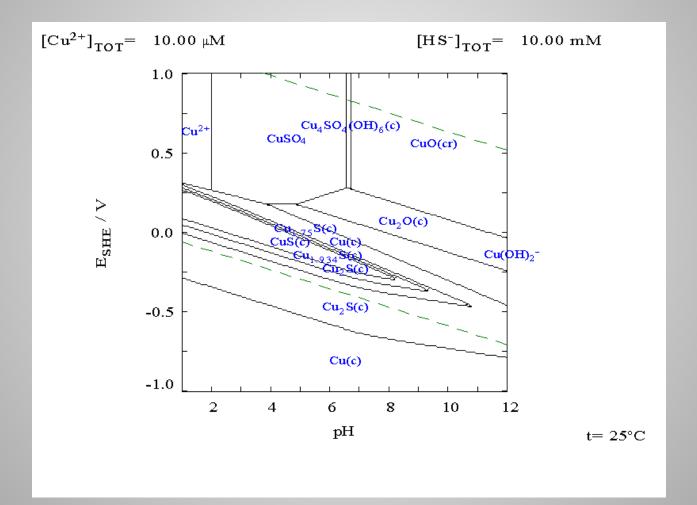

Copper Alloy Failures

- Pitting and crevice corrosion
- Dealloying
- Ammonia grooving and stress corrosion cracking
- Galvanic corrosion
- MIC
- Many above are combinations
- Erosion-Corrosion (this is actually one that is mechanically based)

Copper Failures

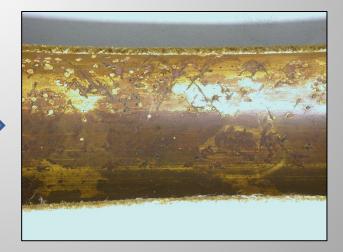
• Pitting and crevice corrosion

Dealloying



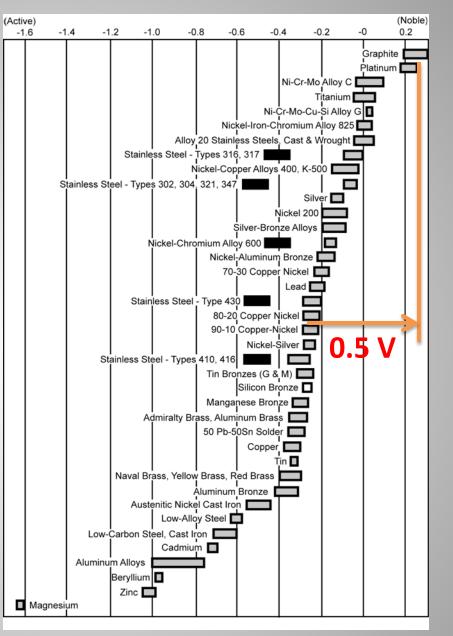
 Ammonia Grooving & SCC

Add a Bit of H₂S



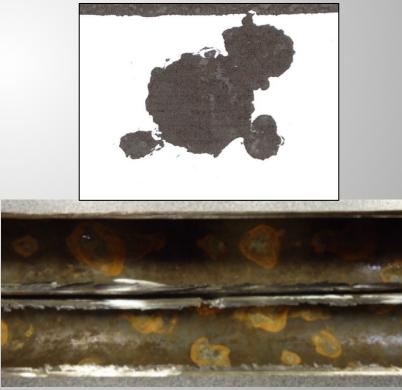
Copper Failures

Galvanic Corrosion



Galvanic Attack

- In area of graphitic char, the Cu/Ni becomes the sacrificial anode!
- It's crucial to make sure that Cu alloy is clean


MIC Attack

Copper Alloys

300 Series

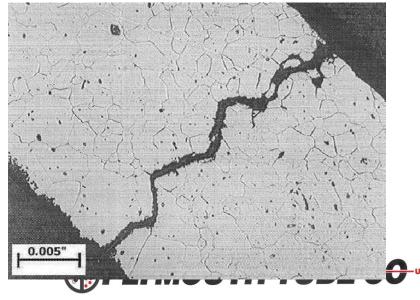
Type 439

Bacteria Groups

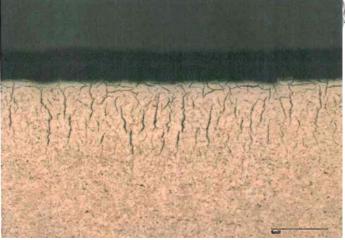
Organism	Action	Problem	
Thiobacillus	Sulfate Reducer	Produces H ₂ SO ₄	Bad For Copper Alloys
Desulfovibrio	Sulfate Reducer	Produces H ₂ S	Bad For Copper Alloys
Gallionella	Mn/Fe Fixer	Precipitates MnO ₂ , Fe ₂ O ₃	
Crenothrix	Mn/Fe Fixer	Precipitates MnO ₂ , Fe ₂ O ₃	Bad for 300 Series SS
Spaerotilus	Mn/Fe Fixer	Precipitates MnO ₂ , Fe ₂ O ₃	
Nitrobacter	Nitrate Reducer	Produces HNO ₃	Bad for Cu & Steel

Hydrogen Embrittlement

- Has become very common on superferritic stainless steels and titanium
- Source or hydrogen is often cathodic protection systems
- These high performance alloys are often considered problem-free!



Hydrogen Embrittlement – Super-Ferritic Stainless


- Can occur quite suddenly under shock condition
- Occurs near H₂ source which is usually at end of tube at rolled transition joint.
- Usually at outer tubesheet edge near anode

Hydrogen Embrittlement – Titanium

- Growth in Ti is gradual
- Located mostly near source but area is more extended
- If cathodically induced, usually tubesheets are damaged at same time

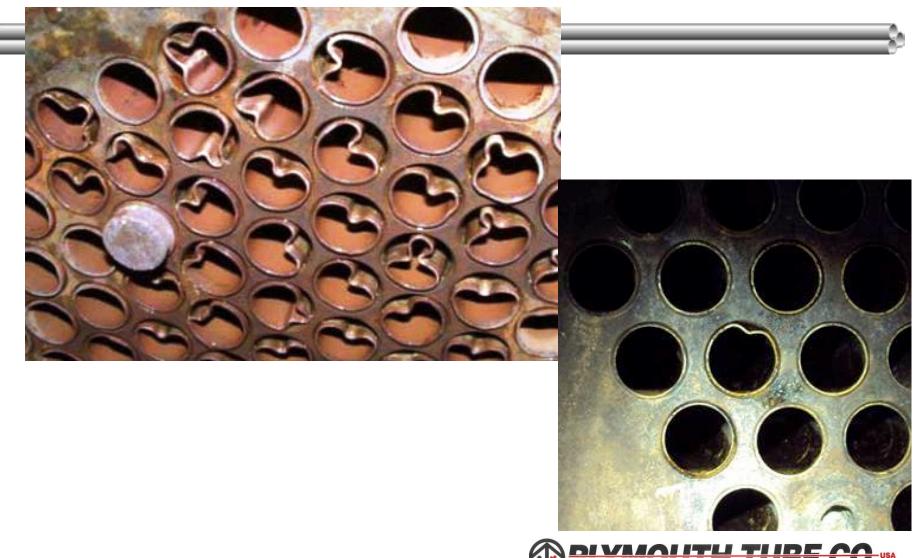
Hydrogen Embrittlement

- In most cases easy to prevent!
 - Keep impressed current system voltage less negative than -750 mv.
 - Don't use Mg based sacrificial anodes
- Super-ferritic embrittlement is reversible
 - Once discovered, eliminate source and ductility will return
- Ti embrittlement is not reversible
 - 8 entire condensers have been replaced.

New Vibration Failure Mode

- Has been identified in 4 nuclear plants
- Random locations in the bundle
- Always associated with a longitudinal groove such as a scratch or weld depression

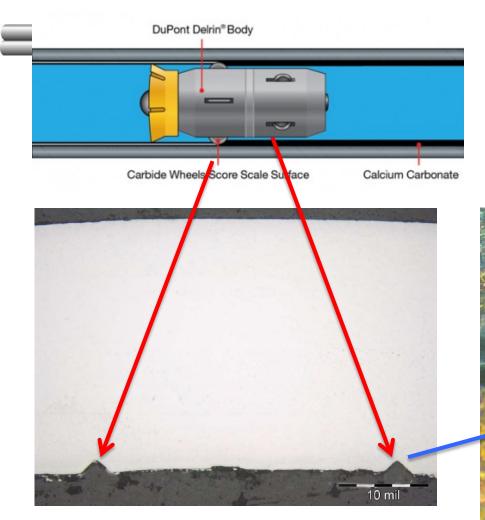
Source: T. Mayer EPRI BOP/NDE Conference, August 6-8, 2012



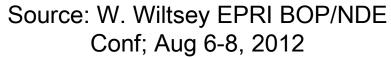
New Vibration Mode Failure

- Believed to be high cycle fatigue from "whirling" motion
 - Tube may be "ovaling" during whirl
- So far has only occurred to Ti
 - Ti has a low modulus and fatigue limit
 - May be accentuated by anisotropy precaution in ASME Section II Part D para. A454

Cleaning Challenges


Cleaning Challenges

- How to avoid?
 - Turn off wand before exiting and don't turn on until it's into tube!
 - Use other cleaning methods



Cleaning Challenges

 <u>Two Ti tubed plants</u> <u>now having failures</u> <u>from ID grooves</u>

"Tubes Are Not Made Like They Use To Be" Summary of 300 Series Critical Pitting Potential

Source	ldent	Anneal	Corr mV	Alloy	Comment
PTWM	D	Good furnace bright anneal	>1200	304L	
А	А		783	316L	
PTWM	L	Tinted furnace bright anneal	519	304L	
PTWM	Е	Poor furnace bright anneal	472	304L	Less shiny
Trent	G	Good in-line anneal	453	316L	
В	В		432	316L	
Trent	F	In-line too low of temp	423	316L	Spec min
Trent	н	In-line with poor purge	364	316L	No tint
В	K		253	316L	Looks OK
С	С		248	316L	Dull

E. Blessman; EPRI Condenser Conf, Chicago 2011

Failures Happen Quicker!

- Copper Alloys
 - Years ago Arsenic was standard addition
 - Today's manufacturing is focused on price
- 300 Series Stainless
 - Today alloy shaving has alloys at bottom of ASTM specification
 - Furnace annealing almost non-existent today
- Specifications rarely require corrosion resistance test

Summary

- No alloy is immune to everything! Even the expensive ones...
- The old "proven" alloys are no longer proven.
- Almost every failure is avoidable provided homework and planning is done.

Questions

Oznur Celikkol MAP Construction & Trading +90.212.349 19 77 oznur.celikkol@mapinsaat.com Dan Janikowski Plymouth Tube +1 262-642-8365 djanikowski@plymouth.com

